Geometry at Infinity

Priority programme of the DFG

Welcome to SPP 2026

This is the platform of a coordinated research programme in mathematics, funded by the German Research Foundation (DFG).  It comprises 80 research projects in the fields of differential geometry, geometric topology, and global analysis. More than 80 researchers from doctoral to professorial level and based at more than 20 German and Swiss universities are represented in this programme. 

No news available.

Latest Blog posts

Progress on the union-closed sets conjecture The union-closed sets conjecture is the following extremely easy to state conjecture about subsets of finite sets: Assume that \(\mathcal{F}\) is a family of subsets of \(\{1, 2, \ldots, n\}\) which is union-closed; this means that for any two sets \(A,B\) in \(\mathcal{F}\) their union \(A \cup B\) is also a member of \(\mathcal{F}\). Then … Continue reading "Progress on the union-closed sets conjecture"
Status-Bias im Peer-Review In der aktuellen Forschung & Lehre ist ein Beitrag mit dem Titel Status-Bias im Peer-Review-Verfahren, den ich sehr interessant fand. Der Beitrag beginnt mit folgenden Worten: Forschungsarbeiten von renommierten Wissenschaftlerinnen und Wissenschaftlern werden trotz gleicher Qualität im Peer-Review-Verfahren deutlich besser bewertet als Arbeiten weniger bekannter Forschender. Zu diesem Ergebnis kommt ein Wissenschaftlerteam um Professor Jürgen … Continue reading "Status-Bias im Peer-Review"
Conjectures about polynomials Recently I stumbled upon the following two conjectures about polynomials: The first one is the Jacobian conjecture: We have polynomials \(f_1, \ldots, f_n\) in the variables \(x_1, \ldots, x_n\) with coefficients in a field \(k\) of non-zero characteristic. We define a function \(F\colon k^n \to k^n\) by setting \[F(x_1, \ldots, x_n) := (f_1(x_1, \ldots, x_n), … Continue reading "Conjectures about polynomials"

This website uses cookies

By using this page, browser cookies are set. Read more ›